Ecological Implications of Erratic Floods in Large River Floodplains of the Andean Amazon Region

Jorge E. Celi & Stephen K. Hamilton Department of Zoology & Kellogg Biological Station Michigan State University <u>celijorg@msu.edu</u>

The Flood Pulse Concept (Junk et al. 1989)

- Floodplains are **transitional** between aquatic and terrestrial zones.
- Large unmodified watersheds produce flood pulses of long duration and extensive seasonal floodplain inundation.
- Small or modified systems produce frequent flood pulses of shorter duration.
- Predictable pulses allow organisms to adapt to and benefit from inundation.
- Unpredictable pulses act as a disturbance and impede adaptation.

The Napo River

- Drains 10⁵ km² of a highly diverse and largely undisturbed region of the western Amazon in Ecuador and Peru.
- Fringed with extensive floodplains along 800 km of lowland reaches.
- Exceptional levels of biodiversity may be related to flood regimes.
 - Intermediate disturbance hypothesis

Laraque et al. 2009. Hydrol. Proc.

Water levels of the Napo River

- Highly variable and less predictable flow and flood regimes (multiple short pulses).
- Contrasts with more predictable, mono-modal regimes of the Amazon, Orinoco, Parana rivers.
- Stage fluctuations range from 4 m in upper reaches to 9 m in lower reaches, vs.
 16 m in the central Amazon.

Source: INAMHI-SENAMHI, Hybam Project.

Source: ANA, Brazil.

Water levels and precipitation

- Less pronounced seasonality in the Napo.
- Hydrograph coupled to precipitation events towards the upper reaches and decoupled (like the Amazon) towards the lower reaches.

Source: INAMHI-SENAMHI, Hybam Project.

Magnitude: Depth of inundation

River levels

- Napo River has smaller amplitude of water levels than the Central Amazon.
 - Lower depth of flooding.
- Deepest flooding occurs at floodplain sites proximal to river.
- Floodplain biota less adapted to cope with deeper floods?

Duration: Floodplain Hydroperiod

- Large variability in flood duration and depth.
- Proximity and hydrological connectivity to river explain depth and duration of flooding.
- Elevation of sampling sites relative to river unknown.
 - Some sites may be on perched terraces?

Frequency: Napo River hydrographs

% time

- Higher frequency of floods towards the Andes.
- Inundation may act more as an ecological disturbance towards the Andes.

Frequency: Floodplain hydrographs

Most floodplain sites showed shallow, continuous inundation

Timing and flashiness: Predictability

downstream

- Lower flood predictability in upstream reaches.
- Much flashier than Central Amazon!

River control of floodplain inundation?

In some places it may to some extent:

Napo R. water level (cm)

Caveat: only modest river floods occurred during the study

Sources of flood water

- Major ions as hydrological tracers
- Na⁺ and Mg²⁺ highest in Andean rivers
- Lowland waters are more dilute in ions although similar in proportions

Sources of flood water

- Floodplain waters span the range from river water to local water
- Most are dominated by local water
- Diversity of water sources may increase floodplain biodiversity

Floodplain Hydrological Regimes Compared

Ecological implications: Do erratic floods matter?

Ecological phenomenon	Central Amazon	Andean Amazon
Aquatic macrophyte growth and coverage	Abundant	Sparse
Fish life cycles tied to flood pulse	Closely	Unknown – perhaps less?
Flooding resets vegetation succession	Sometimes	Often (channel migration)
Flooding as a filter for terrestrial biota	Severe	Lower
Dry season stress on aquatic biota	Modest	Lower
River-floodplain exchange of organic matter, nutrients	High	Modest

Acknowledgements

- Field assistants and local guides.
- Local communities and organizations
- Napo Wildlife Center & Sani Lodge
- HYBAM Project INAMHI (Ecuador) & SENAMHI (Peru)

- World Wildlife Fund Russell E. Train Fellowship
- National Geographic Society Committee for Research & Exploration Grant
- National Science Foundation Doctoral Dissertation Improvement Grant
- Michigan State University: Center for Latin American Studies, Center for Water
 Sciences, College of Natural Sciences,
 Graduate School, Kellogg Biological
 Station